extension | φ:Q→Aut N | d | ρ | Label | ID |
(C32×C6).1C23 = S32×Dic3 | φ: C23/C1 → C23 ⊆ Aut C32×C6 | 48 | 8- | (C3^2xC6).1C2^3 | 432,594 |
(C32×C6).2C23 = S3×C6.D6 | φ: C23/C1 → C23 ⊆ Aut C32×C6 | 24 | 8+ | (C3^2xC6).2C2^3 | 432,595 |
(C32×C6).3C23 = Dic3⋊6S32 | φ: C23/C1 → C23 ⊆ Aut C32×C6 | 48 | 8- | (C3^2xC6).3C2^3 | 432,596 |
(C32×C6).4C23 = S3×D6⋊S3 | φ: C23/C1 → C23 ⊆ Aut C32×C6 | 48 | 8- | (C3^2xC6).4C2^3 | 432,597 |
(C32×C6).5C23 = S3×C3⋊D12 | φ: C23/C1 → C23 ⊆ Aut C32×C6 | 24 | 8+ | (C3^2xC6).5C2^3 | 432,598 |
(C32×C6).6C23 = D6⋊4S32 | φ: C23/C1 → C23 ⊆ Aut C32×C6 | 24 | 8+ | (C3^2xC6).6C2^3 | 432,599 |
(C32×C6).7C23 = D6⋊S32 | φ: C23/C1 → C23 ⊆ Aut C32×C6 | 48 | 8- | (C3^2xC6).7C2^3 | 432,600 |
(C32×C6).8C23 = (S3×C6)⋊D6 | φ: C23/C1 → C23 ⊆ Aut C32×C6 | 24 | 8+ | (C3^2xC6).8C2^3 | 432,601 |
(C32×C6).9C23 = C3⋊S3⋊4D12 | φ: C23/C1 → C23 ⊆ Aut C32×C6 | 24 | 8+ | (C3^2xC6).9C2^3 | 432,602 |
(C32×C6).10C23 = S3×C32⋊2Q8 | φ: C23/C1 → C23 ⊆ Aut C32×C6 | 48 | 8- | (C3^2xC6).10C2^3 | 432,603 |
(C32×C6).11C23 = C33⋊5(C2×Q8) | φ: C23/C1 → C23 ⊆ Aut C32×C6 | 48 | 8- | (C3^2xC6).11C2^3 | 432,604 |
(C32×C6).12C23 = C33⋊6(C2×Q8) | φ: C23/C1 → C23 ⊆ Aut C32×C6 | 24 | 8+ | (C3^2xC6).12C2^3 | 432,605 |
(C32×C6).13C23 = (S3×C6).D6 | φ: C23/C1 → C23 ⊆ Aut C32×C6 | 24 | 8+ | (C3^2xC6).13C2^3 | 432,606 |
(C32×C6).14C23 = D6.S32 | φ: C23/C1 → C23 ⊆ Aut C32×C6 | 48 | 8- | (C3^2xC6).14C2^3 | 432,607 |
(C32×C6).15C23 = D6.4S32 | φ: C23/C1 → C23 ⊆ Aut C32×C6 | 48 | 8- | (C3^2xC6).15C2^3 | 432,608 |
(C32×C6).16C23 = D6.3S32 | φ: C23/C1 → C23 ⊆ Aut C32×C6 | 24 | 8+ | (C3^2xC6).16C2^3 | 432,609 |
(C32×C6).17C23 = D6⋊S3⋊S3 | φ: C23/C1 → C23 ⊆ Aut C32×C6 | 48 | 8- | (C3^2xC6).17C2^3 | 432,610 |
(C32×C6).18C23 = D6.6S32 | φ: C23/C1 → C23 ⊆ Aut C32×C6 | 48 | 8- | (C3^2xC6).18C2^3 | 432,611 |
(C32×C6).19C23 = Dic3.S32 | φ: C23/C1 → C23 ⊆ Aut C32×C6 | 24 | 8+ | (C3^2xC6).19C2^3 | 432,612 |
(C32×C6).20C23 = C3×S3×Dic6 | φ: C23/C2 → C22 ⊆ Aut C32×C6 | 48 | 4 | (C3^2xC6).20C2^3 | 432,642 |
(C32×C6).21C23 = C3×D12⋊5S3 | φ: C23/C2 → C22 ⊆ Aut C32×C6 | 48 | 4 | (C3^2xC6).21C2^3 | 432,643 |
(C32×C6).22C23 = C3×D12⋊S3 | φ: C23/C2 → C22 ⊆ Aut C32×C6 | 48 | 4 | (C3^2xC6).22C2^3 | 432,644 |
(C32×C6).23C23 = C3×Dic3.D6 | φ: C23/C2 → C22 ⊆ Aut C32×C6 | 48 | 4 | (C3^2xC6).23C2^3 | 432,645 |
(C32×C6).24C23 = C3×D6.D6 | φ: C23/C2 → C22 ⊆ Aut C32×C6 | 48 | 4 | (C3^2xC6).24C2^3 | 432,646 |
(C32×C6).25C23 = C3×D6.6D6 | φ: C23/C2 → C22 ⊆ Aut C32×C6 | 48 | 4 | (C3^2xC6).25C2^3 | 432,647 |
(C32×C6).26C23 = S32×C12 | φ: C23/C2 → C22 ⊆ Aut C32×C6 | 48 | 4 | (C3^2xC6).26C2^3 | 432,648 |
(C32×C6).27C23 = C3×S3×D12 | φ: C23/C2 → C22 ⊆ Aut C32×C6 | 48 | 4 | (C3^2xC6).27C2^3 | 432,649 |
(C32×C6).28C23 = C3×D6⋊D6 | φ: C23/C2 → C22 ⊆ Aut C32×C6 | 48 | 4 | (C3^2xC6).28C2^3 | 432,650 |
(C32×C6).29C23 = S3×C6×Dic3 | φ: C23/C2 → C22 ⊆ Aut C32×C6 | 48 | | (C3^2xC6).29C2^3 | 432,651 |
(C32×C6).30C23 = C3×D6.3D6 | φ: C23/C2 → C22 ⊆ Aut C32×C6 | 24 | 4 | (C3^2xC6).30C2^3 | 432,652 |
(C32×C6).31C23 = C3×D6.4D6 | φ: C23/C2 → C22 ⊆ Aut C32×C6 | 24 | 4 | (C3^2xC6).31C2^3 | 432,653 |
(C32×C6).32C23 = C6×C6.D6 | φ: C23/C2 → C22 ⊆ Aut C32×C6 | 48 | | (C3^2xC6).32C2^3 | 432,654 |
(C32×C6).33C23 = C6×D6⋊S3 | φ: C23/C2 → C22 ⊆ Aut C32×C6 | 48 | | (C3^2xC6).33C2^3 | 432,655 |
(C32×C6).34C23 = C6×C3⋊D12 | φ: C23/C2 → C22 ⊆ Aut C32×C6 | 48 | | (C3^2xC6).34C2^3 | 432,656 |
(C32×C6).35C23 = C6×C32⋊2Q8 | φ: C23/C2 → C22 ⊆ Aut C32×C6 | 48 | | (C3^2xC6).35C2^3 | 432,657 |
(C32×C6).36C23 = C3×S3×C3⋊D4 | φ: C23/C2 → C22 ⊆ Aut C32×C6 | 24 | 4 | (C3^2xC6).36C2^3 | 432,658 |
(C32×C6).37C23 = C3×Dic3⋊D6 | φ: C23/C2 → C22 ⊆ Aut C32×C6 | 24 | 4 | (C3^2xC6).37C2^3 | 432,659 |
(C32×C6).38C23 = S3×C32⋊4Q8 | φ: C23/C2 → C22 ⊆ Aut C32×C6 | 144 | | (C3^2xC6).38C2^3 | 432,660 |
(C32×C6).39C23 = (C3×D12)⋊S3 | φ: C23/C2 → C22 ⊆ Aut C32×C6 | 144 | | (C3^2xC6).39C2^3 | 432,661 |
(C32×C6).40C23 = D12⋊(C3⋊S3) | φ: C23/C2 → C22 ⊆ Aut C32×C6 | 72 | | (C3^2xC6).40C2^3 | 432,662 |
(C32×C6).41C23 = C3⋊S3×Dic6 | φ: C23/C2 → C22 ⊆ Aut C32×C6 | 144 | | (C3^2xC6).41C2^3 | 432,663 |
(C32×C6).42C23 = C12.39S32 | φ: C23/C2 → C22 ⊆ Aut C32×C6 | 72 | | (C3^2xC6).42C2^3 | 432,664 |
(C32×C6).43C23 = C12.40S32 | φ: C23/C2 → C22 ⊆ Aut C32×C6 | 72 | | (C3^2xC6).43C2^3 | 432,665 |
(C32×C6).44C23 = C32⋊9(S3×Q8) | φ: C23/C2 → C22 ⊆ Aut C32×C6 | 72 | | (C3^2xC6).44C2^3 | 432,666 |
(C32×C6).45C23 = C12.73S32 | φ: C23/C2 → C22 ⊆ Aut C32×C6 | 72 | | (C3^2xC6).45C2^3 | 432,667 |
(C32×C6).46C23 = C12.57S32 | φ: C23/C2 → C22 ⊆ Aut C32×C6 | 144 | | (C3^2xC6).46C2^3 | 432,668 |
(C32×C6).47C23 = C12.58S32 | φ: C23/C2 → C22 ⊆ Aut C32×C6 | 72 | | (C3^2xC6).47C2^3 | 432,669 |
(C32×C6).48C23 = C4×S3×C3⋊S3 | φ: C23/C2 → C22 ⊆ Aut C32×C6 | 72 | | (C3^2xC6).48C2^3 | 432,670 |
(C32×C6).49C23 = S3×C12⋊S3 | φ: C23/C2 → C22 ⊆ Aut C32×C6 | 72 | | (C3^2xC6).49C2^3 | 432,671 |
(C32×C6).50C23 = C3⋊S3×D12 | φ: C23/C2 → C22 ⊆ Aut C32×C6 | 72 | | (C3^2xC6).50C2^3 | 432,672 |
(C32×C6).51C23 = C12⋊S32 | φ: C23/C2 → C22 ⊆ Aut C32×C6 | 72 | | (C3^2xC6).51C2^3 | 432,673 |
(C32×C6).52C23 = C2×S3×C3⋊Dic3 | φ: C23/C2 → C22 ⊆ Aut C32×C6 | 144 | | (C3^2xC6).52C2^3 | 432,674 |
(C32×C6).53C23 = C62.90D6 | φ: C23/C2 → C22 ⊆ Aut C32×C6 | 72 | | (C3^2xC6).53C2^3 | 432,675 |
(C32×C6).54C23 = C62.91D6 | φ: C23/C2 → C22 ⊆ Aut C32×C6 | 72 | | (C3^2xC6).54C2^3 | 432,676 |
(C32×C6).55C23 = C2×Dic3×C3⋊S3 | φ: C23/C2 → C22 ⊆ Aut C32×C6 | 144 | | (C3^2xC6).55C2^3 | 432,677 |
(C32×C6).56C23 = C62.93D6 | φ: C23/C2 → C22 ⊆ Aut C32×C6 | 72 | | (C3^2xC6).56C2^3 | 432,678 |
(C32×C6).57C23 = C2×C33⋊8(C2×C4) | φ: C23/C2 → C22 ⊆ Aut C32×C6 | 72 | | (C3^2xC6).57C2^3 | 432,679 |
(C32×C6).58C23 = C2×C33⋊6D4 | φ: C23/C2 → C22 ⊆ Aut C32×C6 | 144 | | (C3^2xC6).58C2^3 | 432,680 |
(C32×C6).59C23 = C2×C33⋊7D4 | φ: C23/C2 → C22 ⊆ Aut C32×C6 | 72 | | (C3^2xC6).59C2^3 | 432,681 |
(C32×C6).60C23 = C2×C33⋊8D4 | φ: C23/C2 → C22 ⊆ Aut C32×C6 | 72 | | (C3^2xC6).60C2^3 | 432,682 |
(C32×C6).61C23 = C2×C33⋊4Q8 | φ: C23/C2 → C22 ⊆ Aut C32×C6 | 144 | | (C3^2xC6).61C2^3 | 432,683 |
(C32×C6).62C23 = S3×C32⋊7D4 | φ: C23/C2 → C22 ⊆ Aut C32×C6 | 72 | | (C3^2xC6).62C2^3 | 432,684 |
(C32×C6).63C23 = C3⋊S3×C3⋊D4 | φ: C23/C2 → C22 ⊆ Aut C32×C6 | 72 | | (C3^2xC6).63C2^3 | 432,685 |
(C32×C6).64C23 = C62⋊23D6 | φ: C23/C2 → C22 ⊆ Aut C32×C6 | 36 | | (C3^2xC6).64C2^3 | 432,686 |
(C32×C6).65C23 = C3⋊S3⋊4Dic6 | φ: C23/C2 → C22 ⊆ Aut C32×C6 | 48 | 4 | (C3^2xC6).65C2^3 | 432,687 |
(C32×C6).66C23 = C12⋊S3⋊12S3 | φ: C23/C2 → C22 ⊆ Aut C32×C6 | 48 | 4 | (C3^2xC6).66C2^3 | 432,688 |
(C32×C6).67C23 = C12.95S32 | φ: C23/C2 → C22 ⊆ Aut C32×C6 | 48 | 4 | (C3^2xC6).67C2^3 | 432,689 |
(C32×C6).68C23 = C4×C32⋊4D6 | φ: C23/C2 → C22 ⊆ Aut C32×C6 | 48 | 4 | (C3^2xC6).68C2^3 | 432,690 |
(C32×C6).69C23 = C12⋊3S32 | φ: C23/C2 → C22 ⊆ Aut C32×C6 | 48 | 4 | (C3^2xC6).69C2^3 | 432,691 |
(C32×C6).70C23 = C2×C33⋊9(C2×C4) | φ: C23/C2 → C22 ⊆ Aut C32×C6 | 48 | | (C3^2xC6).70C2^3 | 432,692 |
(C32×C6).71C23 = C62.96D6 | φ: C23/C2 → C22 ⊆ Aut C32×C6 | 24 | 4 | (C3^2xC6).71C2^3 | 432,693 |
(C32×C6).72C23 = C2×C33⋊9D4 | φ: C23/C2 → C22 ⊆ Aut C32×C6 | 48 | | (C3^2xC6).72C2^3 | 432,694 |
(C32×C6).73C23 = C2×C33⋊5Q8 | φ: C23/C2 → C22 ⊆ Aut C32×C6 | 48 | | (C3^2xC6).73C2^3 | 432,695 |
(C32×C6).74C23 = C62⋊24D6 | φ: C23/C2 → C22 ⊆ Aut C32×C6 | 24 | 4 | (C3^2xC6).74C2^3 | 432,696 |
(C32×C6).75C23 = C3×C6×Dic6 | φ: C23/C22 → C2 ⊆ Aut C32×C6 | 144 | | (C3^2xC6).75C2^3 | 432,700 |
(C32×C6).76C23 = S3×C6×C12 | φ: C23/C22 → C2 ⊆ Aut C32×C6 | 144 | | (C3^2xC6).76C2^3 | 432,701 |
(C32×C6).77C23 = C3×C6×D12 | φ: C23/C22 → C2 ⊆ Aut C32×C6 | 144 | | (C3^2xC6).77C2^3 | 432,702 |
(C32×C6).78C23 = C32×C4○D12 | φ: C23/C22 → C2 ⊆ Aut C32×C6 | 72 | | (C3^2xC6).78C2^3 | 432,703 |
(C32×C6).79C23 = S3×D4×C32 | φ: C23/C22 → C2 ⊆ Aut C32×C6 | 72 | | (C3^2xC6).79C2^3 | 432,704 |
(C32×C6).80C23 = C32×D4⋊2S3 | φ: C23/C22 → C2 ⊆ Aut C32×C6 | 72 | | (C3^2xC6).80C2^3 | 432,705 |
(C32×C6).81C23 = S3×Q8×C32 | φ: C23/C22 → C2 ⊆ Aut C32×C6 | 144 | | (C3^2xC6).81C2^3 | 432,706 |
(C32×C6).82C23 = C32×Q8⋊3S3 | φ: C23/C22 → C2 ⊆ Aut C32×C6 | 144 | | (C3^2xC6).82C2^3 | 432,707 |
(C32×C6).83C23 = Dic3×C62 | φ: C23/C22 → C2 ⊆ Aut C32×C6 | 144 | | (C3^2xC6).83C2^3 | 432,708 |
(C32×C6).84C23 = C3×C6×C3⋊D4 | φ: C23/C22 → C2 ⊆ Aut C32×C6 | 72 | | (C3^2xC6).84C2^3 | 432,709 |
(C32×C6).85C23 = C6×C32⋊4Q8 | φ: C23/C22 → C2 ⊆ Aut C32×C6 | 144 | | (C3^2xC6).85C2^3 | 432,710 |
(C32×C6).86C23 = C3⋊S3×C2×C12 | φ: C23/C22 → C2 ⊆ Aut C32×C6 | 144 | | (C3^2xC6).86C2^3 | 432,711 |
(C32×C6).87C23 = C6×C12⋊S3 | φ: C23/C22 → C2 ⊆ Aut C32×C6 | 144 | | (C3^2xC6).87C2^3 | 432,712 |
(C32×C6).88C23 = C3×C12.59D6 | φ: C23/C22 → C2 ⊆ Aut C32×C6 | 72 | | (C3^2xC6).88C2^3 | 432,713 |
(C32×C6).89C23 = C3×D4×C3⋊S3 | φ: C23/C22 → C2 ⊆ Aut C32×C6 | 72 | | (C3^2xC6).89C2^3 | 432,714 |
(C32×C6).90C23 = C3×C12.D6 | φ: C23/C22 → C2 ⊆ Aut C32×C6 | 72 | | (C3^2xC6).90C2^3 | 432,715 |
(C32×C6).91C23 = C3×Q8×C3⋊S3 | φ: C23/C22 → C2 ⊆ Aut C32×C6 | 144 | | (C3^2xC6).91C2^3 | 432,716 |
(C32×C6).92C23 = C3×C12.26D6 | φ: C23/C22 → C2 ⊆ Aut C32×C6 | 144 | | (C3^2xC6).92C2^3 | 432,717 |
(C32×C6).93C23 = C2×C6×C3⋊Dic3 | φ: C23/C22 → C2 ⊆ Aut C32×C6 | 144 | | (C3^2xC6).93C2^3 | 432,718 |
(C32×C6).94C23 = C6×C32⋊7D4 | φ: C23/C22 → C2 ⊆ Aut C32×C6 | 72 | | (C3^2xC6).94C2^3 | 432,719 |
(C32×C6).95C23 = C2×C33⋊8Q8 | φ: C23/C22 → C2 ⊆ Aut C32×C6 | 432 | | (C3^2xC6).95C2^3 | 432,720 |
(C32×C6).96C23 = C2×C4×C33⋊C2 | φ: C23/C22 → C2 ⊆ Aut C32×C6 | 216 | | (C3^2xC6).96C2^3 | 432,721 |
(C32×C6).97C23 = C2×C33⋊12D4 | φ: C23/C22 → C2 ⊆ Aut C32×C6 | 216 | | (C3^2xC6).97C2^3 | 432,722 |
(C32×C6).98C23 = C62.160D6 | φ: C23/C22 → C2 ⊆ Aut C32×C6 | 216 | | (C3^2xC6).98C2^3 | 432,723 |
(C32×C6).99C23 = D4×C33⋊C2 | φ: C23/C22 → C2 ⊆ Aut C32×C6 | 108 | | (C3^2xC6).99C2^3 | 432,724 |
(C32×C6).100C23 = C62.100D6 | φ: C23/C22 → C2 ⊆ Aut C32×C6 | 216 | | (C3^2xC6).100C2^3 | 432,725 |
(C32×C6).101C23 = Q8×C33⋊C2 | φ: C23/C22 → C2 ⊆ Aut C32×C6 | 216 | | (C3^2xC6).101C2^3 | 432,726 |
(C32×C6).102C23 = (Q8×C33)⋊C2 | φ: C23/C22 → C2 ⊆ Aut C32×C6 | 216 | | (C3^2xC6).102C2^3 | 432,727 |
(C32×C6).103C23 = C22×C33⋊5C4 | φ: C23/C22 → C2 ⊆ Aut C32×C6 | 432 | | (C3^2xC6).103C2^3 | 432,728 |
(C32×C6).104C23 = C2×C33⋊15D4 | φ: C23/C22 → C2 ⊆ Aut C32×C6 | 216 | | (C3^2xC6).104C2^3 | 432,729 |
(C32×C6).105C23 = D4×C32×C6 | central extension (φ=1) | 216 | | (C3^2xC6).105C2^3 | 432,731 |
(C32×C6).106C23 = Q8×C32×C6 | central extension (φ=1) | 432 | | (C3^2xC6).106C2^3 | 432,732 |
(C32×C6).107C23 = C4○D4×C33 | central extension (φ=1) | 216 | | (C3^2xC6).107C2^3 | 432,733 |